The Nehari manifold for a <i>?</i>-Hilfer fractional <i>p</i>-Laplacian

نویسندگان

چکیده

In this paper, we discuss the existence and non-existence of weak solutions to non-linear problem with a fractional p-Laplacian introduced by ?-Hilfer operator, combining technique Nehari manifolds fibering maps. Also, obtain some results on operator manifold via Euler functional.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Nehari Manifold for Fractional Systems Involving Critical Nonlinearities

We study the combined effect of concave and convex nonlinearities on the number of positive solutions for a fractional system involving critical Sobolev exponents. With the help of the Nehari manifold, we prove that the system admits at least two positive solutions when the pair of parameters (λ, μ) belongs to a suitable subset of R.

متن کامل

The Nehari Manifold for a Class of Elliptic Equations of P-laplacian Type

1 1 , , 0, , r s p u u h x u dx g x u dx x u x + + −∆ = + ∈ Ω = ∈ ∂Ω () 1, 0 p W Ω () () () 1 1 , 0. r s p u x h x u dx g x u dx in u on + +  −∆ = + Ω   = ∂Ω   () E () () 1 1 / r p s Np N p N p < < − < < − + − () () () 0 0 r h L L C ∞ ∈ Ω Ω Ω   0 1 1 1, r r p * + + = ()() 0. 1 Np r Np r N p = − + − () () 0 s g L L ∞ ∈ Ω Ω  0 1 1 1, s s p * + + = ()() 0 ,. 1 Np Np s p Np s N p N p *   ...

متن کامل

the nehari manifold for a navier boundary value problem involving the p-biharmonic

in this paper, we study the nehari manifold and its application on the following navier boundary valueproblem involving the p-biharmonic          0, on( ) 1 ( , ) , in , 2*2u uf x u u upu u p q where  is a bounded domain in rn with smooth boundary  . we prove that the problem has atleast two nontrivial nonnegtive solutions when the parameter  belongs to a certain subset o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applicable Analysis

سال: 2021

ISSN: ['1026-7360', '1563-504X', '0003-6811']

DOI: https://doi.org/10.1080/00036811.2021.1880569